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A class of lattice models for molecules interacting with an infinite short-range repulsion 
is regarded as a numerical integration procedure for approximating the properties of the 
two-dimensional continuum system of hard discs. Two levels of scaling are applied to 
some of the thermodynamic properties of lattice gases. The first level is needed to 
achieve convergence of lattice-gas properties to those of hard discs as the range of the 
hard-core intermolecular potential increases without limit in comparison with the 
lattice spacing. The second level removes some of the gross integration error arising 
from the lattice approximation and results in good agreement between the density as a 
function of chemical potential for lattice gases and hard discs below about 40 % of the 
close packed density. 

Although it is customarily pointed out in discussions of lattice models that the 
restriction of molecules to positions on a lattice can be regarded as a numerical 
integration procedure for approximating the behavior of molecules in a continuum 
and that the approximation should improve as the lattice spacing is made finer 
relative to the molecular size, little is known about the way in which the continuum 
results are approached. An argument was presented in a separate paper [l] to 
show that hard core molecules on the triangular lattice should approach the 
behavior of hard discs as more and more neighbors are excluded, but the data 
shown in Ref. [l] indicate that this limit is approached in a rather complicated 
way with no easily discernible regularity. We consider here the possibility of scaling 
the lattice results in order to reduce this erratic behavior and obtain a more 
orderly approach to the continuum limit. This has previously been considered by 
Hoover, Alder, and Ree [2] for hard rods, squares, and cubes and much of what 
follows below is closely related to their analysis although a somewhat different 
approach is used here to scale both the density and the activity. 
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ONE-DIMENSIONAL CASE 

To provide a convenient starting point, we shall review briefly the one- 
dimensional hard-core model which has been solved exactly for both the continuum 
case and for a lattice with an arbitrary mesh size. In the continuum case, we 
consider N molecules, each of length u, distributed on a line of total length L; 
then we have (on ignoring the momentum contribution and using Stirling’s 
approximation in place of N!): 

(1) 

for the canonical partition function QC of the continuum hard rod model. In the 
thermodynamic limit (N+ co, L + co, N/L fixed) the continuum pressure and 
chemical potential are given, respectively, by (with /3 = l/H): 

and 

/3pG = - (w), = x + In x - In u, 

where x = p*/(l - p*) and p* = No/L is the reduced density. For the lattice 
model, we consider a subdivision of the line into B sites and associate a length 
(y. = LB-l with each site. Then each of the N molecules of length G “covers” 
cl = UKl lattice sites and the canonical partition function Ql for the lattice gas is 

Q 
2 

= (B-Nd+N)! 
(B - Nd)!N! * 

In the thermodynamic limit we have, for fixed 4, x, 

j3pla = d ln[l + XC+] 

and 

ppz = In 1 “/~‘++x~‘-i 

for the lattice-gas pressure and chemical potential. For the purpose of this 
discussion, the most relevant quantities for comparison are the activities for the 
lattice and continuum models: 

&% = =x x/4(1 + X/d) 
Z 

1 + Xl” 
(7) 
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and 
pc s z c = *-lx+ 

Note that for$xed x, x1 + 0 as 4 -+ co, but that 

(8) 

lim(cixJ = xex = az, . d--lea (9) 

Equation (9) represents the most important result from the one-dimensional case 
in that it shows the necessity for scaling the lattice chemical potential in order to 
obtain a quantity which approaches the correct continuum limit as the number of 
sites covered becomes infinite, and that /3pz + In ti should become equal to 
/3pC + In 0, at any given x, as 4 increases indefinitely. We shall now explore the 
possibility of applying a similar scaling for an arbitrary number of dimensions. 

Two OR MORE DIMENSIONS 

For a continuum fluid in an arbitrary number of dimensions we have the 
following expansion for the density in powers of the activity 

pe = f jbjzj, 
j=l 

where the bj are cluster integrals, pc = NV-‘, and z is the activity. Reduced 
quantities pc*, bj*, and z* are defined by 

PC * = UOPC 

bj* = voitlbj 

z* = voz, 

(11) 

where Q, is the “volume” per molecule at close packing. Then Eq. (10) can be 
expressed in the following dimensionless form: 

po*/z* = 1 + c jbj*(z*)j-I. 
j>2 

For a lattice model we can write, in complete analogy to Eq. (lo), 

(13) 

where we are considering the “volume” V to be spanned by a lattice containing 
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B sites, and we then associate a “volume” a: = VB-l with each lattice site. From 
this point of view the cluster sums 4, can then be regarded as numerical approxi- 
mations to the cluster integrals bj , and each &j has the form 

(14) 

where Sl,2,....j is the usual combination of Mayerf-functions, the summations are 
carried out over all lattice sites for each of the molecules, and the summation has 
been carried out over positions of molecule 1 in obtaining the second form of 
Eq. (14). Note that pL = NV-l = NB-h-l is used in Eq. (13) instead of the more 
customary lattice-gas density N&l, and that the activity x is, therefore, just the 
absolute activity X = es U1 multiplied by a-l. These definitions have been adopted 
to obtain lattice quantities p1 and x which have dimensions of V-l as do pG and z 
in the continuum case. 

We now introduce a reduced density pL* and the number of sites ti “covered” 
by a molecule in terms of NM , the total number of molecules which can be placed 
on B sites at close packing: 

pl* = N/N, 
4 = B/N,+, . 

Then, since N = cxBpl and NIM = Bcr-I, we can write 

and the product oltl can be interpreted as the lattice analog of u,, . On defining 

tj = (c.&-i+~~j 

z = old2 Es crx, 

the following dimensionless equation is obtained from (16): 

(17) 

(18) 

For a given pl*, since the dimensionless cluster sums &j approach the cluster 
integrals bj* as 4 + co, we can expect J to approach z* for pc* = pl* as 4 -+ co. 
In other words, if we take pE* = pc*, we should find that /3pr = pp + In 3 
approaches /3pC* = /3pC + 1 n uO, just as in the one-dimensional case above 
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FIG. 1. Geometric representation of the error in using the second lattice cluster sum to 
approximate the second cluster integral for hard discs. The shaded circles represent hard discs 
with 0-th, lst, 2nd, and 3rd neighbor exclusion shells, and the area of the outer circles in each 
case is equal to twice the absolute value of the second cluster integral for hard discs. The polygonal 
areas represent the corresponding lattice approximations to the same quantity. 

[see Eq. (9)]. Unfortunately, the convergence in two (and probably even more so 
in three) dimensions is not only disappointingly slow but quite irregular. It is a 
rather simple matter to gain an idea of the source of this irregularity from con- 
sidering the cluster sum dz for hard-core molecules on the triangular lattice. 
A qualitative illustration is provided by Fig. 1 for Q = 0, 1,2, 3,l where in each 
case the underlying triangular lattice is represented by the points and the molecules 
are represented by the cross-hatched circles with radii determined according to the 
considerations of Ref. [l]. The area 01 associated with each lattice site is that of a 
hexagon with an altitude equal to one-half of the lattice spacing; for unit spacing, 
oi = $ 43. The area of the outer circle in each case (with radius ro+l) is just -2b,, 

1 An infinite potential energy is associated with a pair of molecules whose centers are placed 
on two sites which are neighbors of order Q or less. For example, when Q = 2, two molecules 
cannot occupy the same site, a first-neighbor pair of sites, or a second-neighbor pair. Otherwise, 
there is no interaction between molecules. By convention, Q = 0 represents the “ideal” lattice-gas 
in which only multiple occupation of a single lattice site is prohibited and the molecules do not 
otherwise affect each other. 
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and the polygonal area composed of the hexagons associated with all lattice sites 
within the exclusion shell of the molecule represents the corresponding lattice 
quantity -24 . The sixfold symmetry involved suggests that hard-core molecules 
on this lattice should be called a “snowflake approximation” to hard discs. 
Obviously, the polygonal area for Q = 2 gives a much better approximation to its 
associated circle than either of the other cases shown in Fig. 1, and the convergence, 
even for 4, , will be quite irregular. Since the complete thermodynamic description 
requires a large number of similar but progressively more complicated integrals, 
the irregular convergence of the “snowflake” model to hard discs is not at all 
surprising. 

ADDITIONAL SCALING 

Although the scaling considered above appears both necessary and sufficient 
to ensure eventual convergence of the lattice-gas properties to those of the 
continuum fluid [at least for the thermodynamic region where Eq. (10) is valid], 
it is worthwhile to seek additional scaling to improve the rate of convergence. 
As we have seen, there is a significant difference between the lattice gas and the 
continuum fluid even for the term representing first-order departure from an ideal 
gas, and some improvement should be attained if this difference is removed. One 
way of achieving this is to introduce a dimensionless scaling parameter b and 
reduced lattice quantities &,*, x* such that 

1” x* = bx’ 
2” _bi* = b-j+l& , 

3” b*=b* -2 2 9 

(19) 

thus b = &lb,* -+ 1 as ri -+ cc. Introduction of these quantities into Eq. (18) gives 

hi* - = 1 + c jq*(~*)+l, a* 
j>2 

and comparison with Eq. (12) indicates that we might expect bpl* to give a good 
approximation to pc* when x* = z*, since this scaling has been devised to remove 
at least the gross integration error represented geometrically in Fig. 1. Table I 
gives the number of sites covered by a molecule CI, the second reduced cluster sum 
-J2 , and the dimensionless scaling parameter b for the “snowflake” approxi- 
mation through Q = 8. The appropriate values of b from this table were used in 
scaling the Monte Carlo results [l] for Q = 1,2, 3 to give the points plotted in 
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TABLE I 

Cluster Sums and Scaling Parameters for Lattice Models 

Order of Number of Second reduced 
neighbors sites Cluster-Sum 

excluded (Q) covered (d) C-4) 
Scaling parameter 

(b! 

0 
1 
2 
3 
4 
5 
6 
I 
8 

Discs 

1 
3 
4 
I 
9 

12 
13 
16 
19 

co 

0.5000 
1.1667 
1.6250 
1.3571 
1 .I222 
1.5417 
1.6538 
1.7188 
1.6053 

1.8138 

0.2756 
0.6433 
0.8958 
0.748 1 
0.9493 
0.8500 
0.9118 
0.9476 
0.8848 

1.oooo 

Fig. 2, which also shows the molecular dynamics data of Alder et al. [3] for hard 
discs. This scaling works remarkably well, since there appear to be only minor 
differences among these three cases below about 40 % of close packing (although 
data in this density range are not available for Q = 2), and the departure from the 
disc results is much less pronounced than it is for the unscaled results.2 

It appears that a singificant reduction of the integration error in the higher-order 
cluster integrals has been achieved, since the density range where substantial 
agreement exists is considerably larger than the range where only two terms are 
needed in the density-activity expansion. This can be rationalized to some extent 
by again considering the one-dimensional model. It is simplest to consider the 
virial coefficients which can be scaled in exactly the same way as the cluster integrals: 

2 Perhaps the most interesting qualitative result of scaling is that the densities associated with 
phase transitions of these lattice models become more regularly behaved. For Q = 1, the h-point 
transition occurs at a reduced density pt* w 0.835, or a scaled density bpt* = 0.537. With more 
than first-neighbors excluded, the reduced densities of the “fluid” at the first-order transition 
point are pf* = 0.685,0.81, and 0.79 for Q = 2, 3 and 4, respectively (see Orban and Bellemans, 
Ref. [4]). The corresponding scaled desities are 0.614, 0.61 and 0.75. Reduced densities of the 
respective coexisting “solid” phases are 0.801,0.98, and 0.88, which scale to 0.718,0.73, and 0.84. 
The hard-disc continuum limit has reduced densities for coexisting fluid and solid phases of 
about 0.762 and 0.790, respectively. Thus, it appears that properties of the hard-disc system may 
be represented reasonably well by appropriately scaled hard-core lattice models, perhaps even 
at densities above the high-density side of the hard-disc transition. The scaled chemical potential 
at the transition, while generally increasing as more neighbors are excluded, is more erratic than 
the density and apparently converges more slowly to the continuum limit. 
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FIG. 2. Scaled lattice-gas density versus chemical potential compared with the density versus 
chemical potential curve for hard discs obtained from the molecular dynamics calculations of 
Alder, Hoover, and Wainwright. For discs, p* = v,/v, where v is the volume per molecule and vO 
is the volume per molecule in a close-packed configuration of discs. The reduced chemical potential 
j3~* is equal to ln(vOz), where z is the absolute thermodynamic activity. For the lattice models, 
p* = N/N,+, , where N is the number of molecules on a lattice containing B sites and NM is the 
number of molecules at close packing. The number of lattice sites “covered” by a molecule is 
denoted by 6, where 4 = B/NM. The scaled density is bp* and the scaled chemical potential ,Gp* 
is equal to /$L + In 4 + In b, where fir is the dimensionless absolute chemical potential for the 
lattice and b is the scaling parameter. 

for the continuum, B,* = z&n+’ B, = 1, all n. For the lattice gas, Hoover has given 
an explicit formula which becomes, in the notation of this paper, 

@', = (ari)-"+lgn = 1 - ~?+-1 + (n - 'k'" - 2, 4-2 + 0(4-3). (21) 

In particular, d2 = 1 - 4d-l and the scaling parameter b is therefore equal to 
1 - g-1. 
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Hence we find 
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g n * G b-n+l@n = 1 + (n - l)(n - 2) 4-z + o(,$-“) 
24 2 (22) 

and the scaling cancels the term of order 4-l for all the virial coefficients. There is, 
of course, no assurance that this will happen in two or three dimensions, but this 
does give some insight into the reason behind the rather nice agreement between the 
scaled lattice results and the reduced density-reduced chemical potential curve for 
hard discs. 

BEHAVIOR NEAR THE CLOSE-PACKED LIMIT 

The scaling parameter b may be regarded as a means of introducing an “effective” 
reduced density bp,* for a lattice gas. It seems probable that b is less than unity for 
any finite number of sites covered (this is certainly true through Q = 8, ri = 19 as 
shown in Table I). Since pl* cannot exceed one, this means that the maximum 
effective reduced density for a lattice-gas is less than one, and, therefore, a lattice 
model will always fail to behave like a continuum model near close packing. 
However, we might expect the lattice and continuum results to show good 
agreement up to a density progressively nearer the close-packed limit as 4 becomes 
large; this is indicated to some extent in Fig. 2 by the results for 4 = 7. Of course, 
it may be improper to apply this scaling parameter near the close-packed limit since 
the expansion upon which it is based diverges before this limit is reached. Never- 
theless, these considerations on scaling do offer a possible explanation for the 
somewhat curious fact that lattice-gases seem to be incapable of leading to a free- 
volume equation of state near close packing, even though the free-volume equation 
is in good empirical agreement with machine calculations for continuum hard-core 
molecules and has been partially justified theoretically by Salsburg and Wood [5]. 
This situation arises because it seems possible to obtain the first two terms in an 
asymptotic expansion of the grand partition function for a triangular lattice model 
by removing one molecule from a close-packed configuration. For the triangular 
lattice this procedure gives 

P * N 1 - x-1 + @A-“); a > 1, (23) 

where h = eSU”; the coefficient of h-l is independent of the number of sites covered. 
Then pp will behave like ln[l/(l - p*)] near p* = 1, whereas the dominant singu- 
larity at close packing from the free-volume theory should be essentially (1 - p*)-‘. 
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Now, if the argument given above that x^ + u,,z as 4 + CO should hold even near 
close packing, then 

P * - 1 - 4z-1 + 0(&q, (24) 

and the coefficients of inverse powers of B would be unbounded as ci -+ 00, hence 
an expansion of this type would not exist in the continuum limit. 
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